머신 러닝에서 기능 학습이란 무엇입니까? 기능 학습은 머신 러닝 작업을 수행하기 위해 적절한 데이터 표현을 찾을 수 있는 일련의 방법입니다. 다시 말해 기능 학습의 목표는 원시 데이터를 기계 학습 작업 (예 : 분류)에 더 적합한 표현으로 매핑하는 변환을 찾는 것입니다. 예를 통해 살펴 보겠습니다. 이를 위해 본질 상 특징 학습의 개념을 활용하는 신경망을 사용할 것입니다. 신경망에서 각 숨겨진 계층은 입력 데이터를 더 높은 수준의 추상화를 캡처하는 경향이 있는 내부 표현에 매핑합니다. 다음 데이터 세트를 분류한다고 가정합니다. 입력을 조정하지 않고 선형 모델 (숨겨진 레이어가 없는 피드 포워드 신경망 등)을 사용하여 데이터를 분리 할 수 없기 때문에 이 데이터 세트는 선형으로 분리 할 수 없습니다..