데이터 수집 데이터 속에서 출력은 입력에 의해 대부분 결정됩니다. 따라서 모형이 학습되는 것입니다. 입력 데이터가 출력 데이터를 제대로 설명하지 못하면 모형과 상관없이 학습이 제대로 되지 않습니다. 즉 "Garbage in, Garbage out" 현상이 발생하는 것 입니다. 만약 머신 러닝에서 입력 변수가 출력 변수를 제대로 설명하지 못한다면, 다른 종류의 입력 변수들을 확보해서 분석해야 합니다. 좋은 모델을 위해서는 충분한 양의 데이터, 좋은 품질의 데이터, 대표성을 띄는 데이터, 관련 있는 특성이 존재하는 데이터가 필요합니다. 데이터 정규화 머신 러닝 모형들은 각자 학습 파라미터가 존재합니다. 이러한 파라미터는 알고리즘에 의해 학습 데이터에 맞게 파라미터는 조정하는 과정이 필요합니다. 이 떄, 변수..