머신러닝 모델머신 러닝 모델은 평균회귀 모델과 다르게 데이터로부터 시작합니다. 머신러닝은 데이터를 통해 무엇인가를 찾아야 합니다. 어느 경우에는 목표가 무엇인지 모르는 상태에서 진행해야 합니다. 그렇다면 어떻게 시작해야 할지 모호한 경우도 많습니다. 머신 러닝에 대한 잘못된 이해는 데이터만 넣어주면 알아서 산출물을 만들어줄 것이라는 믿음입니다. 어떤 데이터를 머신러닝에 제공하느냐에 따라 머신러닝의 결과는 매우 달라집니다. 머신 러닝에 사용할 데이터를 준비하는 것은 사용자가 직접 개입하는 분야입니다. 입력변수를 선택하고 이상치를 배제하고 빠진 데이터를 채워넣고 가공할 수 있기 떄문입니다. 머신러닝 모델을 만들 때 원시 데이터를 수집 한 후, 입력 데이터들을 살펴보아야 합니다. 적절한 입력 변수를 선택하면 ..