반응형

SW/인공지능 250

인공지능 : 손실 함수, 최적화, 백프로파게이션 : 개념, 개요

Error Function, Cost Function, Loss Function이 세 함수는 다 같은 것을 의미합니다. 신경망 모델이 피드포워드 계산한 값과 실제 타겟 값을 비교하는 데 사용되는 함수입니다. 다양한 손실 함수들이 존재하며, 데이터 성격에 맞는 함수를 사용합니다. 대표적으로는 MSE (mean square error), categorical cross-entropy를 많이 사용합니다. MSE (mean square error)평균 제곱근 편차를 의미합니다. Optimizer신경망에서 1차 함수에 w, b를 어떻게 업데이트 시킬 것인지에 사용되는 알고리즘을 의미합니다. 다양한 최적화 메소드가 존재합니다. Gradient descent가 대표적입니다. Back Propagation아웃풋 값의 ..

SW/인공지능 2019.08.17

인공지능 : Perceptron, Feed Foward : 개념 원리

딥 뉴럴 네트워크프로그램 인공 신경은 인풋, 히든, 아웃풋 레이어로 이루어져 있습니다. 퍼셉트론도 역시 유사합니다. 하지만 히든 레이어 부분이 활성화 함수와 선형 함수가 포함되어있습니다. Supervised 학습은 이 input과 output을 입력하여 신경망을 학습시키는 구조입니다. 인풋 값을 히든 레이어에서 처리한 값이 아웃풋과 같아질 수 있도록 학습을 하는 방식입니다. Regression해당 학습을 통해 만약 x 값이 입력되면 y 값이 무엇이 될지에 대해 학습을 하고자하는 것이다. 따라서 여러개의 인풋이 들어가면 각각 선형 함수와 활성화 함수를 통해 아웃풋이 나오게 됩니다. Classification새로운 점은 어떠한 그룹인지 구별을 하는 것을 의미합니다. 여러 점의 포인트 값을 주고 해당하는 그룹..

SW/인공지능 2019.08.16

인공지능 : Batch Normalization : 개념, 원리, 개요

신경망에서의 배치 정규화배치 정규화를 간단한 방법으로 설명합니다. Fast.ai와 deeplearning.ai에서 배운 내용을 읽은 후, 기사를 번역하였습니다. 필요한 이유, 작동 방식, VGG와 같은 사전 훈련된 네트워크에 포함시키는 방법부터 시작하겠습니다. 배치 정규화를 사용하는 이유는 무엇입니까?활성화를 조정하여 입력 레이어를 정규화합니다. 예를 들어 0에서 1까지, 1에서 1000까지의 기능이 있으면 학습 속도를 높이기 위해 정규화해야합니다. 입력 레이어가 이익을 얻는다면, 항상 변경되는 숨겨진 레이어의 값에 대해서도 동일한 작업을 수행하고 훈련 속도를 10 배 이상 향상 시키십시오. 배치 정규화는 숨겨진 단위 값이 이동하는 양 (공분산 이동)에 따라 양을 줄입니다. 공분산 변화를 설명하기 위해 ..

SW/인공지능 2019.08.15

인공지능 : ensemble : 개념, 활용 방법, 성능

딥 네트워크의 앙상블 모델의 앙상블은 여러 통계 모델의 예측을 결합하여 하나의 최종 예측을 형성하는 방법을 나타냅니다. 이것은 모델의 표현력의 다양성에 대한 기회를 열어줍니다. 이 개념은 여러 의사의 의견을 구하는 것과 같은 일화와 유사합니다. 모델의 앙상블은 의사 결정 트리를 임의의 포리스트로 업그레이드하는 것과 같이 기존의 머신 러닝 모델을 매우 일반적으로 향상시킵니다. 머신 러닝 모델과 달리 딥 모델은 학습하는 데 시간이 오래 걸리므로 처음부터 학습한 딥 모델의 앙상블을 형성하는 것은 실용적이지 않습니다. FMoW는 특정 작업에 사용되는 데이터 세트이며 Hydra의 바디는 ResNet 및 DenseNet 설계에 따라 조립 된 많은 신경망 레이어로 구성됩니다. Hydra의 각 헤드는 FMoW 데이터 ..

SW/인공지능 2019.08.14

인공지능 : ReLU(Rectified Linear Unit) : 개념, 원리, 개요

소개ReLU(Rectified Linear Unit)는 딥 러닝 모델에서 가장 일반적으로 사용되는 활성화 함수입니다. 이 함수는 음의 입력을 받으면 0을 반환하지만 양수 x의 경우 해당 값을 다시 반환합니다. 따라서 f (x) = max (0, x)로 쓸 수 있습니다. 그래픽적으로는 다음과 같습니다 이러한 간단한 함수(두 개의 선형 부분으로 구성된 함수)가 모델이 비선형과 상호 작용을 잘 설명 할 수 있다는 것은 놀라운 일입니다. 그러나 ReLU 기능은 대부분의 응용 프로그램에서 훌륭하게 작동하며 결과적으로 매우 널리 사용됩니다. 작동하는 이유 인터랙션 및 비선형성 소개활성화 기능은 두 가지 주요 목적으로 사용됩니다. 1) 모델이 인터랙션 효과를 설명하도록 도와줍니다.인터랙션 효과는 무엇입니까? B의 가..

SW/인공지능 2019.08.13

인공지능 : agent와 taxonomy : 분류법

분류법은 유기체의 명명, 묘사 및 분류 과학이며 세계의 모든 식물, 동물 및 미생물을 포함합니다. 분류 학자들은 형태 학적, 행동적, 유전적, 생화학적 관찰을 사용하여 과학에 새로운 것들을 포함하여 종을 분류하고 분류합니다. 분류법은 생물학적 다양성에 관한 협약의 관리 및 이행을 뒷받침하는 기본 지식을 제공하는 생물학적 다양성의 구성 요소를 식별하고 열거합니다. 불행하게도 분류학 지식은 완전하지 않습니다. 지난 250 년간의 연구에서 분류 학자들은 약 1,78 백만 종의 동물, 식물 및 미생물을 명명했지만, 총 종 수는 알려져 있지 않으며 아마도 5 천에서 3 천만 사이 일 것입니다. 종의 이름을 지정하는 방법 : 분류 과정분류 학자들은 종을 대표한다고 생각되는 세트를 분리하기 위해 표본을 분류하는 것으..

SW/인공지능 2019.08.12

인공지능 : Agents vs Objects : 개념, 분석, 차이

에이전트와 개체에이전트는 다른 이름으로 객체라 할 수 있을까요? 개체란 어떤 상태를 캡슐화하고, 메시지 전달을 통해 의사소통을 합니다. 또한, 특정 상태에서 수행될 수 있는 작업과 방법이 존재합니다. 에이전트와 개체의 주요한 차이점은 무엇일까요? 에이전트는 자율적입니다. 에이전트는보다 자율성 개념을 구현합니다. 특히 에이전트는 수행할지 여부를 스스로 결정합니다. 다른 에이전트의 요청에 따른 조치를 취할 줄 압니다. 에이전트은 영리합니다 : 유연한 (사후, 능동적, 사회적) 행동이 가능합니다. 표준 객체 모델은 이러한 유형의 행동에 대해 아무 반응도 하지 않습니다. 에이전트가 활성 상태인 경우 : 다중 에이전트 시스템은 본질적으로 다중 스레드입니다. 각 에이전트는 하나 이상의 활성 제어 스레드를 가지고 있..

SW/인공지능 2019.08.11

인공지능 : Agents vs Expert Systems : 차이, 개념, 분석

에이전트와 전문가 시스템에이전트는 다른 이름의 전문가 시스템이 아닐까요? 전문가 시스템은 일반적으로 일부에 대해 '전문 지식'을 구현한 것입니다. 예를 들어 MYCIN은 인간의 혈액 질환에 대해 알고 있습니다. 규칙의 형태로 혈액 질환에 대한 풍부한 지식을 가지고 있습니다. 의사는 MYCIN 사실을 알려 혈액 질환에 대한 전문가의 조언을 얻을 수 있습니다. 질문에 대답하고 질문을 제기에이전트와 주요 차이점에 대해 알아보겠습니다. – 에이전트 : MYCIN은 세계를 인식하지 못합니다.사용자는 단지 질문을 통해 정보를 얻는 것입니다. – 에이전트 행동 : MYCIN은 환자에게 작동하지 않습니다.일부 실시간 (일반적으로 프로세스 제어) 전문가 시스템은 에이전트입니다.

SW/인공지능 2019.08.10

인공지능 : Intelligent Agents vs AI : 차이점, 특징

Intelligent Agents VS AI지능형 에이전트는 AI와 다른 것일까요? AI는 도대체 무엇일까요? AI가 에이전트를 구축하는 것일까요? AI는 자연 언어를 (궁극적으로) 이해하고, 장면을 인식하고 이해하며, 상식을 사용하고, 창의적으로 생각하는 등의 시스템을 구축하는 것을 목표로합니다. 에이전트를 만들기 위해 모든 분야의 AI를 구현할 필요가 있을까요? 에이전트를 구축 할 때 일반적으로 제한된 도메인에서 수행 할 올바른 작업을 선택할 수있는 시스템을 원합니다. 유용한 에이전트를 만들기 위해 AI의 모든 문제를 해결해 구현할 필요는 없습니다. 에이전트를 개발해서 큰 돈을 번 사람이 이런 이야기를 하였다고 합니다. 우리는 에이전트를 멍청하고 멍청하게 만들었다. 마침내 에이전트는 돈을 벌어 들였다..

SW/인공지능 2019.08.09

인공지능 : Applications of Intelligent Agents : 종류, 정의

지능형 에이전트의 애플리케이션 종류 지능형 에이전트는 환경, 사용자 입력 및 경험에 따라 결정을 내리거나 서비스를 수행 할 수 있는 프로그램입니다. 이러한 프로그램을 사용하여 정기적으로 프로그래밍 된 일정에 따라 또는 사용자가 실시간으로 메시지를 표시 할 때 자율적으로 정보를 수집 할 수 있습니다. 지능형 에이전트는 로봇의 약자 인 봇이라고도합니다. 일반적으로 사용자가 제공 한 매개 변수를 사용하는 에이전트 프로그램은 인터넷의 전체 또는 일부를 검색하고 사용자가 관심있는 정보를 수집하여 정기적 또는 요청에 따라 제공합니다. 데이터 지능형 에이전트는 포함된 키워드 또는 게시 날짜와 같은 특정 정보를 추출 할 수 있습니다. 인공 지능 (AI)을 사용하는 에이전트에서 사용자 입력은 마이크나 카메라와 같은 센서..

SW/인공지능 2019.08.08

인공지능: 에이전트: CMU: RADAR Project 개요

CMU : RADAR 프로젝트RADAR는 분산 적응 추론을 통한 반사 에이전트를 의미합니다. 이 에이전트는 스케줄 설계 및 자원 배분을 위한 기술이 적용되었습니다. 웹 사이트의 효과적인 설계 및 유지를 위한 기술 중 하나입니다. 또, 전자 메일 기반의 사용자 지원 프로그램으로 개발할 수 있습니다. 그렇다면, CMRADAR는 무엇일까요? 바로 달력 관리를 위한 개인 비서 에이전트입니다. 이 에이전트에는 자동화된 협상 기술을 보유하고 있습니다. 비동기식으로 정보를 교환하고 조치합니다. 그것에 맞게 일정을 설계하고 최적화합니다. 동적인 조건에서 빛을 발합니다. 사용자에 맞게 적응하여, 사용자의 선호도를 분석합니다. 학습을 통해 일정을 설계하고 성과를 개선합니다.

SW/인공지능 2019.08.07

인공지능 : CMU: RETSINA Agent Model : 개요, 설명

CMU : RETSINA 에이전트 모델 이 에이전트는 어떤 특징을 가지고 있을까요? 바로 작업 중심의 지능형 커뮤니케이션을 담당하는 에이전트입니다. 이걸 실현하기 위해서는 인터페이스 에이전트, 작업 에이전트, 정보 에이전트, 매개 에이전트 등이 필요합니다. 그렇다면 어떠한 모듈들이 필요할까요? 우선 통신 / 조정 모듈이 필요합니다. 그리고 계획 모듈이 필요합니다. 그리고 스케줄 모듈이 필요합니다. 이것들을 실행할 실행 모듈이 필요합니다. 이걸로 만들 수 있는 응용 프로그램으로는 어떤 것이 있을까요? 바로 The Calendar Apprentice, the WebWatcher, the Visitor-Hoster 등이 있습니다.

SW/인공지능 2019.08.06

인공지능 : CALO 에이전트 : 개요, 서비스, 목표

CALO(칼로) 칼로는 학습을 하고 조직하고 인지하는 조수의 역할을 수행합니다. 칼로 프로그램의 목표는 무엇일까요? 바로 담당자와 의사 결정권자를 지원하는 것입니다. 학습, 추론, 지각, 다중 모델 상호 작용을 목표로 수행합니다. 그렇다면 이러한 칼로는 어떠한 서비스를 제공해줄까요? 우선 정보를 구성하고 관리 하는 서비스를 제공합니다. 또 정보 제품을 준비합니다. 상호 작용을 관찰하고 중재하는 역할도 수행합니다. 추가적으로 작업 모니터링 및 관리를 수행하고 시간에 맞추어 일정을 잡기도 합니다. 자원을 확보하고 할당하는 역할도 수행합니다. 이러한 칼로에게는 어떠한 기술이 필요할까요? IRIS : LITW 플랫폼이 필요합니다. 또, 과제를 학습할 줄 알고, 적응할 줄 알아야 합니다. 트랜스퍼 학습이 가능해야..

SW/인공지능 2019.08.05

인공지능 : 에이전트 : 시리 개요, 설명

시리시리는 가상 개인 비서를 뜻합니다. 현재는 아이폰에서 주요한 역할을 해내고 있습니다. 시리에 기본적인 정보들을 탐구해보았습니다. 목표시리의 최종 목표는 무엇일까요? 바로 대화를 통해 개인적인 작업들을 수행하는 것입니다. 현재 시리에 기능은 날이 갈수록 파워풀해지고 있다는 것은 여러분도 알고 있을 것입니다. 과연 시리의 발전의 끝은 어떤 모습일까요. 서비스시리의 주요 서비스들에 대해 알아보겠습니다. 먼저 시리는 대화 기반으로 상호작용합니다. 추가적으로 추천 서비스 역할도 합니다. 레스토랑, 영화, 이벤트, 지역, 택시, 날씨 등을 알려주고 추천해줍니다. 또 소셜 커뮤니케이션 역할도 합니다. 시리와 상호작용을 위한 대화식 인터페이스가 있습니다. 이러한 인터페이스를 이해하면 시리의 기능을 잘 활용할 수 있..

SW/인공지능 2019.08.04

인공지능 : 에이전트 : Magitti 개요, 설명

Magitti활동 인식 레저 가이드의 종류입니다. 휴대기기에서 실행되었습니다. 또한 PARC가 설계 및 시제품 제작을 하였습니다. 목표 및 서비스도시 여행을 도와주는 가이드 역할을 하였습니다. 따라서 추천 서비스를 제공하였습니다. 레스토랑, 상점 등을 추천하였고, 기술들도 소개하였습니다. 필터링 및 순위 지정사용자 기본 설정이 제공됩니다. 또한, 사용자가 추가적으로 설정을 할 수 있습니다. 협업 필터링 기능이 제공됩니다. 컨텍스트 인식시간, 위치, 이메일, SMS, 캘린더 기능을 통해 컨텍스트 인식을 할 수 있습니다. 현재 제공해주는 플랫폼 서비스들과 유사합니다. 사용자 활동 예측인구 통계를 통해 사용자 활동을 예측해줍니다. 또한, 이메일, SMS를 분석하기도 합니다. 개별적으로 패턴을 학습을 하기 위해..

SW/인공지능 2019.08.03

인공지능 : agent 개요, 종류

에이전트 개요 에이전트는 특정 환경에 위치한 컴퓨터 시스템입니다. 또한 이러한 환경에서 자율적인 행동이 가능합니다. 바로 이것이 에이전트 설계의 목적입니다. 주요 특징들에는 어떤 것이 있을까요? 바로 자율성, 사회성, 반응성, 독창성 등이 있습니다. 또한, 상황 대처 능력, 지속성, 협력, 적응력 등이 예가 됩니다. 기타 특성으로는 어떤 것이 있을까요? 바로 이동성, 진실성, 자비심, 합리성 등이 있습니다. 이러한 특성들로 기존 로봇들과 특정 유형의 에이전트를 식별할 수 있습니다. 대표적인 에이전트들에는 어떤 것이 있을까요? - 투어 가이드 : 핵심 아이디어는 질문에 대답하는 데 도움을 주는 상담원을 제공하는 것입니다. 우리는 보통 여행을 하는 경우 인터넷을 탐색하며 어디에 갈지 탐색을 하고는 합니다. ..

SW/인공지능 2019.08.02

인공지능 : 지능 행동의 속성, 특성, 특징

로봇과 인간의 차이점은 무엇일까요? 인간만이 가지고 있는 지능적인 특징, 속성, 특성에 대해 알아보겠습니다. 대표적인 인간과 로봇과의 차이점은 아래와 같습니다. - 고집- 충동- 이해와 공감으로 다른 사람들의 말을 듣는다.- 협력적 사고 - 사회적 지능- 생각의 융통성- 메타인지 - 자신의 사고에 대한 인식- 정확성과 정밀성을 위해 노력함- 유머 감각- 심문 및 문제 제기- 과거 지식 그리기와 새로운 상황에 적용하기- 위험 감수- 모든 감각을 사용- 독창성, 독창성, 통찰력 : 독창성- 놀라움, 호기심, 호기심, 그리고 문제 해결의 즐거움 - 사상가로서의 효용감 좀 더 행동적인 측면에서는 어떤 차이가 있을까요? 한번 알아보겠습니다. • 생각하고 추론합니다.• 근거를 사용하여 문제를 해결합니다.• 경험을 ..

SW/인공지능 2019.08.01

인공지능 : CNN : 개요, 개념, 원리, 소개

CNN (Convolutional Neural Network)의 기본 개요컨벌루션 레이어의 원리, 활성화 함수, 풀링 레이어 및 완전 연결 레이어 CNN(Convolutional Neural Network)는 컴퓨터 비전 또는 시각적 이미지를 분석하는 데 사용되는 신경 네트워크 클래스입니다. Convolutional Layer컴퓨터는 이미지를 픽셀로 읽으며 행렬 (NxNx3)로 표현됩니다. 이미지는 3 개의 수로 (rgb)를 사용한다, 그래서 3이 있습니다. Convolutional layer는 일련의 학습 가능한 필터를 사용합니다. 필터는 원본 이미지 (입력)에 있는 특정 피처 또는 패턴의 존재를 감지하는 데 사용됩니다. 일반적으로 행렬 (MxMx3)로 표현되며 크기는 작지만 입력 파일과 동일한 뎁스입..

SW/인공지능 2019.07.31

인공지능 : Drop Out : 개념, 원리, 팁

신경망을 위한 드롭 아웃 정규화드롭 아웃은 Srivastava 등이 제안한 신경망 모델의 정규화 기법입니다. 드롭 아웃은 훈련 중에 무작위로 선택된 뉴런을 무시하는 기술입니다. 뉴런들은 무작위로 "탈락"합니다. 이는 다운 스트림 뉴런의 활성화에 대한 기여가 순방향 패스에서 일시적으로 제거되고 모든 가중치 업데이트가 역방향 패스에서 뉴런에 적용되지 않는다는 것을 의미합니다. 신경 회로망이 학습 할 때, 신경 회로의 가중치는 네트워크 내에서 상황에 따라 결정됩니다. 뉴런의 가중치는 특정 특성을 제공하는 피쳐에 맞춰 조정됩니다. 이웃하는 뉴런은 이 전문 분야에 의존하게되고, 너무 멀리 잡히면 훈련 데이터에 너무 특수한 취약한 모델이 될 수 있습니다. 훈련 중 뉴런에 대한 상황에 의존하는 것은 complex c..

SW/인공지능 2019.07.30

인공지능 : Convolution Neural Network (CNN): 역사

1990년대 초반- 음성 인식 및 문서 판독을 위한 시간 지연 신경망 (Waibel, 1989; LeCun, 1998) 1990년대 후반- 광학 문자 인식 및 필기 인식 (Microsoft, 2003) 2000년대 초반- 이미지에서 물체와 영역의 감지, 세분화 및 인식 (렌, 2015, 레드먼, 2016)- 교통 표지 인식, 생물학적 이미지의 세분화 (Ciresan, 2012; Ning, 2005)- 자연 언어 이해, 음성 인식 (Collobert, 2011; 2013 년 Sainath) 2012년 (혁명적인 시점)- 딥 러닝 CNN을 이용한 ImageNet 분류 (힌튼, 2012)- GPU, ReLU, 드롭 아웃 등의 사용 최근- 하드웨어, 소프트웨어 및 알고리즘 병렬화 진행으로 교육 시간이 단축 된 ..

SW/인공지능 2019.07.29
반응형