오버피팅 분류에 대해 알아보겠습니다. 지도 학습의 주요 유형은 회귀와 분류입니다. 회귀 및 분류 측면에서 가장 많은 개념을 알아보도록 노력하여야 합니다. 위 그림에는 두가지 범주가 있습니다. 개와 고양이라고 할 수 있습니다. 모든 데이터를 설명하는 좋은 모델은 이전 예제에서 보았듯이 로직에 따라 약간의 오류가 있는 이차 함수처럼 보입니다. 오버피팅된 모델은 어떨까요? 물론 선형 모델의 경우 선형 모델 데이터가 변화되지 않은 경우 정확도가 약 60% 정도 올바르게 분류하고 과적합 모델이 예측치를 완벽하게 분류할 수 있습니다. 데이터 세트의 고양이 및 개 사진을 가지고 다시 새로운 사진으로 테스트를 진행한다면 성능이 매우 저하됩니다. 잘 훈련된 모델은 어떤 것일까요? 잘 알려지지 않은 모델과 과적합 모델 사..